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Distribution systems historically lack enough sensor measurements

Available measurements fail to provide a universal solution involving a wide

variety of sources
Fast but sparse (FS) measurements: PMUs, SCADA

Slow but abundant (SA) measurements: smart meters

Distribution systems not fully observable
Hosting capacity for solar generation cannot be accurately estimated

Unnecessary solar curtailments
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Funded by:

H / SOLAR ENERGY
Outline '//////m:z%gg&?mi'nsz?:;ﬁf

Project Overview
Limitations of Existing Models
Machine Learning Model Architecture
Algorithm
Test Results

Closed-Loop Operation

Conclusion

This presentation may have proprietary information and is protected from public release.



Funded by:

Project Overview P e

o /111 u.s. Department Of Energy

* This project aims to use of Machine Learning for integration and synchronization
of diverse data sources for distribution system state estimation.

E Offline Training
1
L Graph-Learnin C
[ Slow but abundant Meparurimemg — Peflt9dICFl
(SA) measurements e nformation Flow

Synchronizer

Event-Triggered
Information Flow

[ Predicted SA ][ Feedback ]

measurements correction Offline

Information Flow

Hybrid Robust
State Estimator

Fast but sparse Sparse Event

- System configuration
. (FS) measurements Identifier y igurati

Steady state
awareness

" Dynamic event |
awareness

This presentation may have proprietary information and is protected from public release.



Project Overview

Funded by:

7 SOLAR ENERGY
G111 s o trovty

* This project aims to use of Machine Learning for integration

and synchronization

of diverse data sources for distribution system state estimation.

Offline Training

- Graph-Learning
[ Slow but abundant

(SA) measurements

—
Measurement

Synchronizer

[ Predicted SA ][ Feedback ]

measurements correction

Hybrid Robust
State Estimator

| Sparse Event 1
Identifier

" Dynamic event | Steady state
_ awareness | awareness

Fast but sparse

{FS) messiwamuants - System configuration

This presentation may have proprietary information and is protected from public release.

Periodic
Information Flow

Event-Triggered
Information Flow

Offline
Information Flow



Project Overview

Funded by:

7 SOLAR ENERGY
G111 s o trovty

* This project aims to use of Machine Learning for integration

and synchronization

of diverse data sources for distribution system state estimation.

- Graph-Learning
[ Slow but abundant

(SA) measurements

—_—

‘ Measurement

Synchronizer
L —

Predicted SA Feedback
measurements correction

Hybrid Robust
State Estimator

Fast but sparse Sparse Event

- Syst fi ti
_ (FS) measurements Identifier YSiem conTeuraTon

Steady state
awareness

f e o |
Dynamic event
awareness |

This presentation may have proprietary information and is protected from public release.

Periodic
Information Flow

Event-Triggered
Information Flow

Offline
Information Flow



Project Overview

Funded by:

7 SOLAR ENERGY
G111 s o trovty

* This project aims to use of Machine Learning for integration and synchronization
of diverse data sources for distribution system state estimation.

Offline Training

- Graph-Learning
[ Slow but abundant

(SA) measurements

—
Measurement

Synchronizer

Predicted SA Feedback
measurements correction

g —
Hybrid Robust
State Estimator

e

Fast but sparse Sparse Event

- Syst fi ti
_ (FS) measurements Identifier YSiem conTeuraTon

Steady state
awareness

f e o |
Dynamic event
awareness |

This presentation may have proprietary information and is protected from public release.

Periodic
Information Flow

Event-Triggered
Information Flow

Offline
Information Flow



Project Overview

Funded by:

7 SOLAR ENERGY
G111 s o trovty

* This project aims to use of Machine Learning for integration

and synchronization

of diverse data sources for distribution system state estimation.

- Graph-Learning
[ Slow but abundant

(SA) measurements

—_—

‘ Measurement

Synchronizer
L —

Predicted SA Feedback
measurements correction

Hybrid Robust
State Estimator

Fast but sparse Sparse Event

- Syst fi ti
_ (FS) measurements Identifier YSiem conTeuraTon

Steady state
awareness

f e o |
Dynamic event
awareness |

This presentation may have proprietary information and is protected from public release.

Periodic
Information Flow

Event-Triggered
Information Flow

Offline
Information Flow



Funded by:
SOLAR ENERGY

PrObIem Statement : TECHNOLOGIES OFFICE

U.S. Department Of Energy

Input:
* FS measurements (node voltage, FS line
active power, FS line reactive power) each 1 T Lot vainng | g
minute; a e B | T omtonrow
¢ SA measurements (node active power, node S i Event-Triggered
. . . Information Flow
reactive power, derived active power of [ Practeend SA ][ feseck ]
measurements orrection Offline
unmeasured lines, derived reactive power SU— Information Flow
ybrid Robus
of unmeasured lines) each 60 minutes; State Estimator
* network topology as a graph. ast but sparse Sparse Event .
p gy g p (FSF] rrlm:astur:‘:nems | d:‘uf‘:n System configuration
namic even Steady state
Output: ey
[ ]

predicted SA measurements each 1 minute s gmsmeT

This presentation may have proprietary information and is protected from public release.



Problem statement:

Black Lines: observable lines (FS measurements
and derived measurements from zero injections,

every 1 minute)
Red Lines: unobservable lines (derived

measurements from SA measurements, every 60

minutes)
Gray Lines: disconnected lines

Objective: predict the power injections (SA
measurements) at all the nodes (every 1 minute)
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*  Existing graph learning methods:
Masking the power flow features of the unobservable lines;

Use the power flow features of the observable lines (FA measurements) to predict the
nodal injections (SA measurements) directly based on the Graph Neural Network (GNN).

* Limitations of these methods:
The methods have a limited performance when there are too many unobservable lines;

—————— Every 60 minutes

Every 1 minutes
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* Motivation of designing a new framework
Many lines are highly correlated to each other in terms of active/reactive power
Can we first predict the unobservable lines, so the GNN has a complete input for
predicting the nodal injections?
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* Motivation of designing a new framework
Many lines are highly correlated to each other in terms of active/reactive power
Can we first predict the unobservable lines, so the GNN has a complete input for
predicting the nodal injections?
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* Motivation of designing a new framework
Many lines are highly correlated to each other in terms of active/reactive power
Can we first predict the unobservable lines, so the GNN has a complete input for
predicting the nodal injections?
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* Motivation of designing a new framework
Many lines are highly correlated to each other in terms of active/reactive power
Can we first predict the unobservable lines, so the GNN has a complete input for
predicting the nodal injections?
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* Motivation of designing a new framework
Many lines are highly correlated to each other in terms of active/reactive power
Can we first predict the unobservable lines, so the GNN has a complete input for
predicting the nodal injections?
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* Motivation of designing a new framework
Many lines are highly correlated to each other in terms of active/reactive power
Can we first predict the unobservable lines, so the GNN has a complete input for
predicting the nodal injections?
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*  Framework Overview

A basic version of the line prediction model has been built. An Edge Graph Convolution
(EGC) is used to predict active/reactive power of unobservable lines, and a Graph

Attention Network (GAT) is used to capture the power grid topology information for
node injection prediction.

o B9

------ Every 60 minutes

Every 1 minutes
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* Edge Graph Convolution (EGC)

Construct an edge graph based on the topology graph
* Node in edge graph = Edge in topology graph
* Edge in edge graph = two edges connected to the same node in topology graph

Topology Graph Edge Graph

Remove

Adopt Graph Convolutional Network (GCN) on the edge graph

This presentation may have proprietary information and is protected from public release.
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* Traditional Graph Attention Network (GAT)
1. Apply attention coefficients to calculate relationships between nodes
2. Normalization by softmax to reweight the importance of neighbor nodes when doing
graph aggregation

M

— =
eij = LeakyReLU (E}T[W hil|lW hj])
Normalization

eXP(ez‘j)
ZkeN,- exp(e;x)

aij = softmaxj(eij) =
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*  QOur Modified GAT

1. Apply attention coefficients to calculate relationships between nodes based on both node
features and line features

2. Normalization by softmax to reweight the importance of neighbor nodes when doing graph
aggregation

attention coefficients Combination of features of Node i, j and Line ij
~. R / .
eij = LeakyReLU (E)T[W hi|l|Wh; |
Normalization
exp(ei;)

a;; = softmax;(e;;) = 2 ken; exP(€ir)
ceN; %

3. Only in-degree lines are involved in graph aggregation
4. Aggregated line features are also concatenated to node features after node aggregation

This presentation may have proprietary information and is protected from public release.
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*  Three scenarios with different percentages of unobservable lines are simulated.

Node Prediction Error Percentage

Proportions of Node Prediction (Mean Absolute Error)

Unobservable Lines Active Power Reactive Power Active Power Reactive Power
1.1559 0.4113 0.57% 0.91%
1.7250 0.4796 0.85% 1.06%
4.8650 1.0425 2.41% 2.29%

*  Even with some of the line flows are unobservable and cannot be derived based on the
physical distribution system model (i.e., unobservable system), the model can still achieve a
relatively low error (much less than 10%)

This presentation may have proprietary information and is protected from public release.
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* Line Prediction Results: Line 59-61
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*  Node Prediction Results: Node 93
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*  Node Prediction Results: Node 37
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*  Next Steps:

Incorporate time series information;

Test the performance during topology changing period.
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Mutually-assisted measurement predictor
and state estimator:

The ML-based measurement predictor
enhances the system observability and
measurement redundancy for the robust SE;
The robust SE checks the predicted
measurements against the physical grid
model, rejects those with plausible errors,
and estimates the errors as residuals. This
information will be fed back to the ML-
based predictor to enhance the prediction
accuracy.
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Generation of bad data

Spike-shape bad data.

Square-shape bad data.
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Triangular-shape bad data.

Trapezoidal-shape bad data.
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The deep learning model uses the measurement residuals of the WLAV state
estimator to retrain the model and refine the prediction of SA measurements.

Measurement Prediction accuracy of the DL model
under different measurement corruption conditions

Data Active Power Reactive Power
Clean 11.9233 5.7904
Corrupted 29.1641 9.7516
Residual-Corrected 13.9248 6.2632

The feedback mechanism significantly enhances the prediction accuracy of the deep
learning model.

This presentation may have proprietary information and is protected from public release.
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Results show that the feedback of the robust WLAV estimator can significantly
enhance the prediction performance of the deep learning model.
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We propose a graph-learning-based measurement predictor to synchronize
measurements with different reporting rates in distribution systems.

The EGC-GAT measurement predictor can infer unobservable line flows and
nodal injections by capturing variable correlations.

The robust WLAV state estimation can check the consistency between predicted
measurements and grid models and provide useful information for enhancing
the learning-based prediction.
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